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Database fingerprint (DFP): an approach 
to represent molecular databases
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Abstract 

Background: Molecular fingerprints are widely used in several areas of chemoinformatics including diversity analysis 
and similarity searching. The fingerprint‑based analysis of chemical libraries, in particular of large collections, usually 
requires the molecular representation of each compound in the library that may lead to issues of storage space and 
redundant calculations. In fact, information redundancy is inherent to the data, resulting on binary digit positions in 
the fingerprint without significant information.

Results: Herein is proposed a general approach to represent an entire compound library with a single binary finger‑
print. The development of the database fingerprint (DFP) is illustrated first using a short fingerprint (MACCS keys) for 
10 data sets of general interest in chemistry. The application of the DFP is further shown with PubChem fingerprints 
for the data sets used in the primary example but with a larger number of compounds, up to 25,000 molecules. 
The performance of DFP were studied through differential Shannon entropy, k‑mean clustering, and DFP/Tanimoto 
similarity.

Conclusions: The DFP is designed to capture key information of the compound collection and can be used to com‑
pare and assess the diversity of molecular libraries. This Preliminary Communication shows the potential of the novel 
fingerprint to conduct inter‑library relationships. A major future goal is to apply the DFP for virtual screening and 
developing DFP for other data sets based on several different type of fingerprints.

Keywords: Diversity, Information content, Molecular fingerprints, Similarity, Shannon entropy

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The concept of molecular similarity is commonly used 
in different areas of chemistry including drug discovery. 
This is because one of the core paradigms in drug design 
is that similar compounds share similar properties. A 
number of molecular representations and similarity coef-
ficients have been proposed [1] to quantify the molecular 
similarity between single molecular structures and com-
pound libraries.

In chemoinformatics, molecular fingerprints are one 
of the most common representations of chemical struc-
tures. Representations of this type are simplifications 

of the chemical information contained in any chemical 
entity through binary vectors. Figure 1a illustrates a sche-
matic representation of a binary fingerprint representa-
tion of a chemical structure. Each position in the vector 
indicates the absence (0) or presence (1) of features pre-
determined in the design of the fingerprint. For instance, 
binary vectors developed thus far are the Molecular 
ACCess System (MACCS) keys [2] and PubChem finger-
prints. Despite the fact binary fingerprints lacks of accu-
racy, they have the advantage of increasing calculation 
speed and reducing storage space. These features, com-
bined with broad applicability for several years have made 
molecular fingerprints one of the standard representa-
tions to measure molecular diversity among several other 
applications. However, since the amount of information 
stored in molecular databases is increasing constantly, 
there is a need to generate simplifications of the molecu-
lar representation of compound databases to open new 
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approaches to studies of the chemical space, optimize the 
storage and enhance the speed of computations.

The goal of this work was to introduce a new binary 
fingerprint that encodes the main features of a com-
pound data set. The herein called database fingerprint 
(DFP) is schematically illustrated in Fig.  1b and further 
explained throughout this Preliminary Communication. 
The DFP is inspired on the concept of Shannon entropy 
(SE) [3] and is based on redundancies present in binary 
representations. It is well known that the redundan-
cies present in a given signal are the responsible of the 
information content and therefore of the indirect rela-
tion with noise and SE. DFP take advantage of these facts 
to extract the general pattern of molecular information 
contained in chemical compound sets represented with 
any binary fingerprint. As case of study, a DFP was gen-
erated for ten data sets of general interest in chemistry 
with particular emphasis on drug discovery. The basic 
concept of DFP is illustrated first with a small finger-
print (MACCS keys 166-bits) for relative small data sets 

(up to 1500 molecules). Then, the application of DFP is 
shown for a newer and more complex molecular repre-
sentation (PubChem fingerprints) for larger databases up 
to 25,000 molecules. Related molecular representation 
methods like bit fingerprints and different informational 
content metrics can be complementary to DFP in stud-
ies of consensus chemical space characterization [4–7]. 
One of such approaches is the modal fingerprint. This 
fingerprint is based on common molecular paths found 
in chemical sets to determine a unique representation of 
2048 bits long that depends in a preset percentage of the 
database used. This representation can contain, for exam-
ple, carbonyl or amide functional groups, but also molec-
ular fragments or complete molecular structures [8].

Methods
DFP concept and construction
The main steps to construct the DFP are shown in Fig. 2. 
To illustrate the concept of DFP, MACCS keys (166-bits) 
[2] were calculated for the ten compound data sets in 

Fig. 1 a Schematic representation of a binary and dictionary‑based molecular fingerprint. b Schematic representation of a database fingerprint 
(DFP)
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Table 1 using MayaChemTools [9]. As a reference, 1500 
binary vectors 166-bit long were generated randomly 
with the server www.random.org (that uses atmospheric 
noise to generate random numbers). Since the focus of 
this work was the generation of a novel fingerprint rep-
resentation that includes the main features (bit positions) 
of the compounds in a molecular library, the following 
approach, inspired on the concept and applications of SE 
[10, 11] was followed: Firstly, for each binary digit posi-
tion of the features encoded in the MACCS keys the fre-
quencies and probabilities were recorded. Then, the total 
SE of the distribution of the 166-bits in the MACCS keys 
was computed (as a metric of molecular diversity). 

To generate the DFP a threshold for the bit probabil-
ity was established. If the probability for a given bit was 
greater than the threshold, the bit position was assigned 
with a number 1. If the probability was equal or lower 
than the threshold, the bit position was assigned with a 
number zero. Lastly, to construct the DFP with MACCS 
keys, two different probability thresholds were explored 
as first approach: (a) the mean value of the probabil-
ity distribution of the herein calculated random vectors 
(0.55) and (b) the mean probability of a data set plus one 
standard deviation.

To illustrate the concept of the DFP ten data sets were 
chosen as test cases (Table 1). The compound collections 

Fig. 2 Overview of the approach implemented in this work

Table 1 Compound databases used to illustrate the concept of DFP

a SE: Shannon entropy

Database Type Size Mean MACCS keys/Tanimoto SEa

Benzimidazole In‑house 92 0.61 32.37

Epigenetic focused Commercial 113 0.45 49.36

DNMT1 In‑house 566 0.46 48.72

Clinical Therapeutic target database 837 0.43 52.83

General screening Commercial (website) 1100 0.43 51.91

Natural products Natural products 1498 0.64 33.71

Semi‑synthetic Related to natural products 1498 0.60 29.19

Drugs Approved for clinical use 1490 0.37 54.20

GRAS Approved in the food industry 1500 0.38 31.40

GDB13 Generated Data Base 13 1500 0.44 49.04

http://www.random.org
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cover a broad range of sizes (ranging from 92 to 1500 
molecules) and structural features. Data sets included a 
small group of 92 synthetic compounds sharing the ben-
zimidazole scaffold (this data set has been used in activity 
landscape studies [12], a commercial set of 113 molecules 
for epigenetic drug discovery (‘Epigenetic focused’), an 
in-house data set with 566 compounds tested as inhibi-
tors of DNA methyltransferase 1 (DNMT1). This set has 
been used in chemoinformatic analysis of the epigenetic 
relevant chemical space [13, 14]. Other compound col-
lections used here were 837 molecules in clinical trials 
(‘Clinical’), a general screening collection (typically used 
in high-throughput screening—HTS) with 1100 mol-
ecules, 1498 natural products and 1498 semi-synthetic 
compounds, 1490 drugs approved for clinical use [15], 
1500 generally recognized as safe (GRAS) compounds 
[16] and a set of 1500 molecules selected from Generated 
Data Base 13 (GDB13) available at http://gdb.unibe.ch/
downloads/ [17].

DFP application with PubChem fingerprint and larger data 
sets
The application of the DFP was applied on 100–25,000 
compound databases (Table  2). To this end, we used the 
PubChem fingerprint that is a newer and more complex 
molecular representation. For this section we increased the 
number of compounds for several libraries and included a 
data set used in HTS with 15,000 molecules (PrimScreen 
15 available at http://www.otavachemicals.com/download-
compound-libraries/cat_view/110-diversity-sets). The 
PubChem fingerprint encodes molecular fragments infor-
mation with 881 binary digits. The list of the substructure 
encoded on each bit can be accessed at ftp://ncbi.nlm.nih.
gov/pubchem/specifications/pubchem_fingerprints.txt. 
This molecular representation was selected to calculate the 

bit position frequencies and probability distributions to 
construct the DFP for the original databases.

For this part, three different thresholds (0.5, 0.6 and 
0.7), the informational significant bit positions were 
selected using Differential Shannon Entropy [18] imple-
mented in the IMMAN package software [19]. The 
probability distribution and relation between classical 
Shannon entropy average, DFP/Tanimoto similarity and 
k-mean clustering of the informational significant bit 
positions was studied.

Results and discussion
This section is organized in two major parts. First, the 
concept of DFP is discussed using MACCS keys for com-
pound data sets up to 1500 compounds. The second part 
shows an application of DFP with PubChem fingerprints 
for larger data sets.

Distribution of binary fingerprint: SE as metric of database 
diversity
Figure  3 shows the probability distributions of MACCS 
keys (166-bits) for three representative data sets (drugs, 
benzimidazoles, and Epigenetic-focused) plus the ran-
domly generated binary fingerprints as a reference. The 
probability distributions of the other compound data sets 
are shown in Additional file 1: Fig. S1. The correspond-
ing SE values for each probability distribution is shown in 
each group and are further reported in Table 1 for all data 
sets. In addition, Table 1 summarizes the mean similarity 
value using the MACCS keys fingerprints and Tanimoto 
index (MACCS keys/Tanimoto similarity) of all ten data 
sets. Table 1 and Fig. 3; Additional file 1: Fig. S1 show that 
each data set had different values of SE that was associ-
ated with the mean MACCS keys/Tanimoto similarity.

Figure 4 shows the relationship between SE and mean 
MACCS keys/Tanimoto similarity. The plot shows that 
high SE is associated with high intra-set diversity i.e., 
low similarity. Likewise, lower SE is associated with high 
similarity. Of note, SE is not a magnitude that can be 
expressed in terms of an absolute scale because no upper 
limit boundaries are known. A general observation is 
that high SE is an indicative that it is less likely that two 
compounds in the data set have similar fingerprint repre-
sentation. If this observation is repeated for many pairs 
of compounds in the data set, then the overall similarity 
of the compound data set is low and the mean similarity 
of the data set is expected to be low. In contrast, if the 
overall SE of the data set is (relatively) low, it is likely that 
two molecules in the data set have similar fingerprint 
representation. Therefore, it is expected that the overall 
diversity of the data set is (relatively) low e.g., the overall 
similarity of the compound data set is high. This general 
trend was observed for nine out of ten data sets.

Table 2 Compound databases used to  show the applica-
tion of DFP

Database Type Size

Benzimidazole In‑house 92

Epigenetic focused Commercial 113

DNMT1 In‑house 566

Clinical Therapeutic target database 830

General screening Commercial (website) 1100

Natural products Natural products 4460

Semi‑synthetic Related to natural products 25,327

Drugs Approved for clinical use 1462

GRAS Approved in the food industry 2244

PrimScreen15 PrimaryScreen 15 14,489

FDA Approved for clinical use 1621

http://gdb.unibe.ch/downloads/
http://gdb.unibe.ch/downloads/
http://www.otavachemicals.com/download-compound-libraries/cat_view/110-diversity-sets
http://www.otavachemicals.com/download-compound-libraries/cat_view/110-diversity-sets
ftp://ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
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A notable exception was the GRAS set: SE of the 
MACCS keys has a relative low value (30) but the data set 
has high diversity (as measured with MACCS keys/Tani-
moto <0.40). In other words, despite the fact that there 
is a relative low entropy in the fingerprint representation 
of GRAS, it happens that the likelihood that two com-
pounds share similar fingerprint representation is low. 
It is worth noting that MACCS keys/Tanimoto captures 
pair-wise relationships that are not directly captured by 
the SE of the entire fingerprint. A second notable excep-
tion was the random set that had, as expected, the highest 
SE value (above 80) but MACCS keys/Tanimoto similar-
ity of 0.33. The distinct feature of GRAS (as compared to 
the other data sets considered in this work) can be related 
to the particular structural features of molecules in this 
data set. It has been shown that GRAS molecules have a 
high content of aliphatic chain and has a low diversity of 
molecular scaffolds [20]. It should also be considered that 
MACCS keys is unable to capture the particular features 
of GRAS compounds.

Fig. 3 Probability distributions of MACCS keys (166‑bits) of representative data sets studied in this work. The number of compounds, mean MACCS 
keys/Tanimto similarity, and Shannon entropy (SE) are shown

Fig. 4 Relationship Shannon Entropy and MACCS keys/Tanimoto 
similarity for the ten compound data sets in Table 1. A drugs, I general 
screening, C clinical, G GDB13, D DNMT1, E epigenetic focused, M 
semi‑synthetic, N natural products, B benzimidazole, GR GRAS, R 
random
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The plot in Fig. 4 shows two main clusters that group 
together the different data sets. These databases can be 
related through the nature of the compounds in each 
cluster. In the larger cluster (upper left), all the data sets, 
with exception of GDB13, are related to synthetic bio-
active molecules. While the small cluster contains data 
sets that include natural products, semi-synthetic natu-
ral products and benzimidazole derivatives, all present in 
living organisms.

Based on the above results, it can be suggested that 
SE of the probability distributions of MACCS keys (166-
bits) can be used as an additional criterion to rapidly 
assess the fingerprint-based diversity of compound data 
sets. Of course, additional metrics and criteria e.g., scaf-
fold diversity, should be considered for a comprehensive 
assessment of the structural diversity of data sets [21]. 
It is worth noting that the concept of SE was initially 
used to measure the content of information in particu-
lar messages [3]. Nowadays, along with similarity and 
molecular scaffolds, SE has been implemented to meas-
ure scaffold diversity [10, 22]. In chemoinformatics, SE is 
also related to the generation of many kinds of molecu-
lar representations based on graph theory and virtual 
similarity searches, among others [23, 24]. In particular, 
SE has been used previously to determine the similarity 
between a given molecule and a focused library [24]. In 
that approach, Wang et al. calculated the variation of SE 
of a focused library with and without a given compound 
to determine their similarity with the redundant futures 
present in the database.

DFP
As described above, 166-bit long DFP were generated 
for all ten compound data sets in Table 1. Representative 
DFP of selected data sets are shown in Additional file 1: 
Table S1. Two different thresholds were used to deter-
mine the limit redundancy value, the mean probability 
of a random distribution and the inter-mean plus one 
database standard deviation (vide supra). As described 
below, to select the most representative threshold value, 
a comparison with city block distance was performed. 
Using this criteria one DFP per database was calculated 
with the different thresholds, resulting in the selection of 
the mean probability of a random distribution as a final 
threshold.

DFP and inter‑set relationships
Table  3 shows the city block distance [1] between the 
data sets considering the newly developed DFP. A 2D vis-
ualization of the distance matrix is presented in the Addi-
tional file 1: Fig. S2.

As expected, the randomly generated set was the most 
distant i.e., most dissimilar, to the other ten data sets 

with real molecules. In agreement with previous publica-
tions [13, 14] there was a small distance between com-
pounds in the clinic (‘Clinical’) and general screening 
and approved drugs. Similarly, there was a small distance 
between the commercial molecules focused on epige-
netic targets (‘Epigenetic focused’) and compounds for 
general screening and molecules in the ‘Clinic’. Indeed, 
it can be expected a large overlap between the chemi-
cal spaces of all these data sets using MACCS keys from 
which the DFP was designed. In contrast, after random, 
GRAS compounds were the second most distant to all 
other data sets considered in this study. This is consistent 
with previous results that support that GRAS molecules 
are dissimilar to other databases commonly used in drug 
discovery using MACCS keys [25].

Taken together the results in Table  3, further visual-
ized in Additional file  1: Fig. S2, can be concluded that 
the newly DFP is a reasonable approximation of the fin-
gerprint-based representation of a molecular database. 
Similar trends between the inter-set relationships were 
obtained with the DFP and the Tanimoto coefficient 
(Additional file 1: Table S2 and Fig. S3), and the inter-set 
relationships calculated with MACCS keys and the Tani-
moto coefficient (Additional file 1: Fig. S4).

DFP and intra‑set relationship
Table  4 shows the relationship between the intra-set 
mean similarities computed with two strategies, namely; 
a classical approach calculated the pair-wise mean simi-
larity with MACCS keys/Tanimoto coefficient. The sec-
ond approach was an approximation of the intra-set 
similarity using the newly proposed DFP: for each data 
set, the similarity based on the DFP was calculated as the 
mean similarity between the MACCS keys representation 
of each compound and the DFP of the data set. Results 
summarized in Table 4 (and plotted in Additional file 1: 
Fig. S5) show a direct relationship between these two val-
ues supporting the hypothesis that DFP was able to retain 
the general information contained in a given compound 
data set. Even if DFP underestimated the similarity values 
(Table 4), it was a reasonable tool to estimate the intra-
set molecular diversity, since these comparison studies 
are relative to the databases.

DFP application with PubChem fingerprint and larger data 
sets
For three different thresholds (0.5, 0.6 and 0.7) the infor-
mational significant bit positions of PubChem, 198, 180, 
and 159 respectively, were selected using Differential 
Shannon Entropy implemented in IMMAN package soft-
ware. Figure 5 shows the classical Shannon entropy aver-
age versus the average DFP/Tanimoto Similarity based 
in the 198 information significant bit positions obtained 
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with a 0.5 threshold with IMMAN software. Figure 5 also 
displays the databases cluster membership on five clus-
ters obtained with k-mean Euclidean distances imple-
mented in WEKA software [26].

Similar to Figs.  4, 5 shows two main clusters that 
group together different data sets that contain chemi-
cally related compounds. For instance, in the larger clus-
ter colored blue, all the data sets, with exception of PS15, 
are related to synthetic bioactive molecules. While the 
small two-member clusters, in red color, group FDA and 
Approved datasets. The one-member clusters correlates 
with the previously reported distinct nature of GRAS, 
MEGx, and Benzi compounds.

This general grouping of compound data sets in Fig. 5 
is consistent with the probability distribution of the 198 
significant bit positions recovered from the original 

databases represented by PubChem fingerprints. In Fig. 6 
the datasets probability distributions can by grouped in a 
similar way to the cluster membership illustrated in Fig. 5.

The same analysis was applied for 0.6 and 0.7 DFP 
thresholds. The implementation of this cutoff criteria 
led to a significant decrease in the resolution of the DFP 
to distinguish differences between the databases stud-
ied. The respective probability distributions and classi-
cal Shannon entropy average versus the average DFP/
Tanimoto Similarity plots, with k-mean clustering, can be 
found in the Additional file 1: Figs. S6–S9.

Conclusions and perspectives
In this Preliminary Communication we introduced the 
DFP as an approach to generate a binary fingerprint rep-
resentation of a compound collection with a fixed size. 

Table 3 Inter-set relationships of the compound data sets computed with the database fingerprint (DFP) and city block 
distance

NP natural products, SS semi‑synthetic, Benz benzimidazole, GS general screening, EF epigenetic focused

Random GDB13 DNMT1 GRAS NP SS Benz GS Drugs Clinical EF

Random 0

GDB13 54 0

DNMT1 51 27 0

GRAS 67 27 42 0

NP 63 39 24 48 0

SS 65 32 34 22 43 0

Benz 64 35 33 43 32 46 0

GS 49 23 12 37 24 32 31 0

Drugs 49 19 17 30 29 27 33 10 0

Clinical 47 23 13 38 25 32 32 4 9 0

EF 50 26 12 42 24 37 32 8 15 9 0

Table 4 Intra-set mean similarity of  the compound data 
sets

a Pair‑wise mean similarity calculated with MACCS keys/Tanimoto coefficient
b Calculated as the mean similarity between the MACCS keys representation of 
each compound and the DFP of the data set

Date set Mean similarity 
(MACCS keys)a

Mean similarity (DFP)b

Benzimidazole 0.61 0.69

Epigenetic focused 0.45 0.54

DNMT1 0.46 0.54

Clinical 0.43 0.49

General screening 0.43 0.49

Natural products 0.64 0.64

Semi‑synthetic 0.60 0.63

Drugs 0.37 0.44

GRAS 0.38 0.44

GDB13 0.44 0.53

Fig. 5 Relationship Shannon entropy and DFP/Tanimoto similarity 
and k‑mean Euclidean clustering for the ten compound data sets in 
Table 2 at threshold of 0.5 threshold value
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The new fingerprint has the ability to include the main 
structural futures of the molecules in the data set. The 
construction of the DFP is based on the distribution of 
the probabilities of each position in a given binary fin-
gerprint of fixed length. A test cases, DFP were gener-
ated for ten compound data sets of different size using, 
as an example, a short and commonly used fingerprint 
representation: MACCS keys (166-bits). The applica-
tion of DFP is also illustrated for large molecular librar-
ies using PubChem fingerprints, with a total of 881-bits. 
DFP for compound data sets with a broad range size 
(ranging from 100 to 25,000 molecules) were calculated 
using three different threshold values to explore the fin-
gerprint behavior with respect to database size, diver-
sity, cutoff criteria and different content of information 
metrics. It was concluded that DFPs are reasonable rep-
resentations of the compound data sets to measure the 
intra- and inter-set relationships. One of the principal 
perspectives of DFP is its performance in virtual screen-
ing and library design applications. Despite the fact that a 
quantitative analysis of the advantages of DFP over other 
fingerprints in terms of computer time is beyond the 
scope of this work [the comparison will largely depend 

on the specific fingerprints compared, compound data-
bases and computer(s) processors] is clear that DFP saves 
time because they are pre-calculated and stored for later 
applications.

Additional file

Additional file 1:Table S1.  DFPs of representative data sets used in 
this work. Table S2. Inter‑set relationship computed with the newly 
developed database fingerprint using DFP/Tanimoto coefficient. Fig. 
S1 Distributions of MACCS keys (166‑bits) of selected data sets studied 
in this work (others are shown in the main text). Fig. S2 Visual represen‑
tation of the distance matrix comparing inter‑set relationships of the 
compound data sets computed with the database fingerprint (DFP) and 
city block distance. Fig. S3 Relationship between inverse normalized city 
block distance and Tanimoto similarity using the DFP. Fig. S4 Inter‑set 
relationships of the compound data sets computed with MACCS keys and 
the Tanimoto coefficient. Fig. S5 Relationship between mean similari‑
ties computed with MACCS keys and DFP. Fig. S6 Relationship Shannon 
Entropy and DFP/Tanimoto similarity and k‑mean Euclidean clustering 
for the ten compound data sets in Table 2 at threshold of 0.6. Fig. S7 
Probability distribution of the 198 significant bit positions recovered from 
the original databases represented by PubChem fingerprint at threshold 
of 0.6.Fig. S8 Relationship Shannon Entropy and DFP/Tanimoto similarity 
and k‑mean Euclidean clustering for the ten compound data sets in 
Table 2 at threshold of 0.7. Fig. S9 Probability distribution of the 198 
significant bit positions recovered from the original databases represented 
by PubChem fingerprint at threshold of 0.7.

Fig. 6 Probability distribution of the 198 significant bit positions recovered from the original databases represented by PubChem fingerprint at 
threshold of 0.5

http://dx.doi.org/10.1186/s13321-017-0195-1
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